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[1] The performance of the Multiscale Air Quality Simulation Platform (MAQSIP) in
simulating the regional distributions of tropospheric ozone and particulate matter (PM) is
evaluated through comparisons of model results from three-dimensional simulations
against available surface and aircraft measurements. These applications indicate that the
model captures the dynamic range of observations and the spatial trends represented in
measurements. Some discrepancies also exist, however, and they are discussed in the
context of model formulation, input data specification and assumptions, and variability
and bias in measurements. The daily normalized bias (within ±20%) and normalized gross
errors (<25%) for predicted surface level O3 over an entire summer season are within
the suggested performance criteria for management evaluation studies and are comparable
to, if not smaller than, those reported previously for other regional O3 models.
Comparisons of modeled PM composition with speciated fine particle concentration
measurements show that the model is able to capture the spatial variability in fine PM
mass as well as in the inorganic component fractions. Both measurements and model
results show that in the summertime in the eastern U.S., SO4

2� is a relatively large
component of fine PM mass; in contrast, NO3

� is a significant fraction in the western U.S.
in the wintertime case studied. The ability of the model to simulate the observed visibility
indices (extinction coefficient and deciview) are evaluated through comparisons of
model estimates using both a detailed Mie theory-based calculation (based on predicted
aerosol size and number distributions) and an empirical mass reconstruction algorithm.
Both modeled and observed data show that among the various aerosol components, in the
eastern U.S. SO4

2� contributes the largest fraction to the aerosol extinction (35–85%),
while organic mass contributes up to 20–25%. In contrast, in the western U.S., SO4

2� and
NO3

� have comparable contributions (20–50%) to the observed aerosol extinction.
Comparisons with limited observational aircraft data, however, show moderate to poor
correlation with measurements in the free troposphere. While these discrepancies can be
attributed in part to model initialization and lateral boundary conditions specification,
there is a need for further evaluation of the representation of boundary layer-free
troposphere exchange mechanisms as well as the chemical mechanisms currently used in
the model for representing chemistry in the free troposphere.
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1. Introduction

[2] Over the past 2 decades, several urban-to-regional-
scale atmospheric chemistry-transport models (CTMs)
have been developed to study distributions of atmospheric
pollutants and relate source emissions to receptor air
quality [e.g., McRae et al., 1982; Lamb, 1983; Chang
et al., 1987; Venkatram et al., 1988; Morris and Myers,
1990; Carmichael et al., 1991; McKeen et al., 1991;
Yamartino et al., 1992; Lu et al., 1997]. Detailed com-
parisons of the features of these models can be found in
the reviews by Seigneur and Saxena [1990], Peters et al.
[1995], and Russell and Dennis [2000]. In many cases the
models, along with associated processing systems, were
developed to address specific air pollution problems and,
in general, represented the state of the science at their
inception. Further advances in each of the models have
occurred over the years, but a limiting factor in their
evolution has been the individual software architecture
coupled to the availability of computational resources.
Consequently, the design of these models has been based
on getting the most practical process representation given
the computational restrictions. However, in recent years
substantial strides have been made in computational
technology that can now facilitate the inclusion of more
detailed process representations, advanced parameteriza-
tions, and more accurate numerical methods in the
models.
[3] In this paper we summarize results from several initial

applications of the Multiscale Air Quality Simulation Plat-
form (MAQSIP), a comprehensive Eulerian grid-based
model for the transport, chemical transformation, and de-
position removal of gas- and particulate-phase atmospheric
trace constituents. The model has evolved from the concep-
tual requirements outlined in the work of Coats et al. [1993]
and Dennis et al. [1996] and was, at its inception, a
prototype for U.S. EPA’s evolving Models-3 Community
Multiscale Air Quality (CMAQ) model [Byun and Ching,
1999]. The model has been designed to study current
scientific issues related to ozone, airborne acids, and par-
ticulate matter (PM) at scales ranging from urban to
intercontinental, in a flexible and modular framework that
permits detailed comparison of the adequacy of alternative
process algorithms, and to evaluate scientific understanding
of new process formulations. This paper presents tests of
model performance for tropospheric ozone (O3) and related
photochemical species, particulate matter, and visibility
estimates that compare model simulations with measure-
ments from a variety of surface- and aircraft-based plat-
forms available for the individual simulation periods. The
following section presents a summary of the various phys-
ical and chemical processes and their numerical representa-
tions in these applications.

2. Model Description

[4] MAQSIP solves the basic mass conservation equation
for trace gases and the moment dynamic equations (MDEs)
for two or three moments (number and volume, or number,
surface area, and volume) for various ‘‘modes’’ (subpopu-
lations) of the particulate size distribution in three dimen-
sions as given in equations (1a) and (1b). The governing

species continuity equation (flux-form) in generalized coor-
dinates can be expressed [Srivastava et al., 1994] as
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where g is the determinant of the metric tensor; ci is the
concentration (mass/volume) of pollutant i; x j is the jth
coordinate; v j is the contravariant velocity (i.e., the
component of the velocity vector in the x j direction); Ri is
the chemical formation or loss rate of pollutant i; Si is
the source/sink term for pollutant i; the overline denotes the
mean; and the prime symbol denotes fluctuation about the
mean. The determinant of the metric tensor encapsulates
the coordinate transformations between the physical and
computational space. This formulation allows MAQSIP to
accommodate the commonly used horizontal map projec-
tions (i.e., Lambert conformal, polar stereographic, and
Mercator) as well as various vertical coordinates. In
applications over the United States presented here, the
model uses the Lambert conformal mapping, and a non-
hydrostatic sigma-P coordinate system.
[5] The MAQSIP MDE for Mki, the kth moment of the

ith mode of the particulate size distribution, is expressed
similar to equation (1a) [Binkowski and Shankar, 1995]
as
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where Ski is the rate of change for the kth moment of the ith
mode due to cloud processes, Gki is the condensational
growth rate for the kth moment of the ith mode, Ckii is the
unimodal coagulation rate for the kth moment of the ith
mode, Ckij is the bimodal coagulation rate for the kth
moment between modes i and j, and Eki is the emission rate
for the kth moment of the ith mode, computed from the
emission rates of the fine- and coarse-mode species. The
model configuration used in this work assumes a fixed
geometric standard deviation of the size distribution in each
of three modes and predicts its zeroeth moment (equivalent
to number concentration) and third moment (proportional to
volume). Modes are distinct populations of aerosols; these
applications use a total of three modes to represent the
aerosol size distribution. These comprise the fine aerosol
modes, formed mainly by secondary chemical processes,
spanning the Aitken and accumulation mode size ranges
(typically 0.001–1 mm in median diameter), and the coarse
aerosol mode, formed mainly by mechanical processes (and
typically 1–10 mm in median diameter). Section 2.5
contains details of the governing processes in the right-
hand side of equation (1b).
[6] Key input variables to MAQSIP are a comprehensive

set of emissions and meteorological variables. The modular
design of MAQSIP permits a number of choices in the
algorithm used for each modeled process. Several of
these have been evaluated in detail during the course of
the model development; their descriptions and results
of the evaluations can be found in the online technical
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note available at http://cf.unc.edu/cep/empd/pub_files/
maqsiptechnote.pdf, and in references therein. In the
following we summarize the salient features of the
algorithms used in the applications presented in this work.

2.1. Transport Processes

2.1.1. Advective Transport
[7] The model solves the three-dimensional (3-D) advec-

tion equation by using time-splitting [Yanenko, 1971] to
separate it into locally one-dimensional equations. Alternat-
ing the sequence of operations helps reduce time-splitting
errors to yield a quasi-second-order accurate solution [Byun
et al., 1999]. The applications in this paper have used a
positive-definite and monotonic advection scheme by Bott
[Bott, 1989a, 1989b] due to its relatively high accuracy in
conserving mass, minimal numerical diffusion and phase
errors, and modest computational costs. In addition, to
ensure mass-consistent coupling to the 3-D wind fields
input to the model, MAQSIP uses an adjustment of the
vertical wind component wherein the vertical velocities are
rediagnosed using an inverse donor cell scheme following
Odman and Russell [2000].
2.1.2. Turbulent Mixing
[8] MAQSIP treats the processes of both horizontal

and vertical diffusion. Four boundary layer schemes are
currently available for representing the subgrid-scale
vertical turbulent mixing of trace species in MAQSIP; two
are based on the concepts of eddy diffusivity, and two are
based on mixing rates/potentials [Alapaty and Mathur,
1998]. The applications presented here used the eddy-
diffusivity scheme described in Chang et al. [1987], a
first-order local-closure scheme, wherein the coefficient of
eddy diffusivity is estimated using nonlocal parameters (i.e.,
noncontiguous in space, such as planetary boundary layer
[PBL] height), while the vertical diffusion/mixing is per-
formed locally, between two adjacent vertical layers. For the
free troposphere, turbulent mixing is parameterized using
the formulation suggested by Blackadar [1976].
[9] Horizontalmixing resulting from turbulent fluctuations

in the horizontal wind field is parameterized in MAQSIP
based upon the eddy diffusivity equation formulated by
McRae et al. [1982], which can be simplified to yield the
horizontal contravariant diffusivities as a function of the
horizontal eddy diffusivity, Kh. Specification of Khmust take
into account the implicit numerical diffusion in advection
[Yamartino et al., 1992;Odman et al., 1997], which in turn is
related to the grid size, wind speed, and concentration
gradients.Odman et al. [1997] provide a quantitative analysis
of numerical diffusion for selected advection schemes, along
with a guidance for specifying Kh. Given the uncertainties
associated with scale dependency of horizontal diffusion, our
applications use a spatially uniform Kh, whose magnitude
depends on the grid resolution.

2.2. Gas-Phase Chemistry

[10] Two chemical mechanisms, the Regional Acid Depo-
sition Model (RADM) Version 2 (RADM2) [Stockwell et
al., 1990] and an updated version of the Carbon Bond
Mechanism-IV (CBM-IV) [Gery et al., 1989], are available
to represent the tropospheric gas-phase chemical transfor-
mations in MAQSIP. The ozone simulations presented here
used a version of the CBM-IV mechanism, which includes

updates consistent with current consensus kinetics knowl-
edge. These include updated kinetic data for the CO + OH
reaction [DeMore et al., 1994] and for PAN chemistry
[Chang et al., 1996], an updated condensed isoprene
chemical mechanism based on Carter [1996], and modifi-
cations to the chemical pathways of universal peroxy radical
operators (XO2 and XO2N) used in the CBM-IV mecha-
nism. The additional XO2 + HO2 reaction proposed by
Dodge [1989] is included to improve the H2O2 yields in
this mechanism. Also, three additional XO2N reactions
(XO2N + HO2, XO2N + XO2, and XO2N + XO2N) are
considered. Studies with these modifications indicate that
these terminal reactions can significantly affect simulated
regional NOx and O3 concentrations [Kasibhatla et al.,
1997]. The RADM2 mechanism has also been extended
for PM simulations to include oxidation pathways for
formation of secondary organic aerosol (SOA) from anthro-
pogenic volatile organic compound (VOC) precursors
(higher alkanes, internal alkenes, and aromatics [cresols,
xylene, and toluene], and biogenic precursors [monoter-
penes] whose oxidation by OH, O3, and NO3 mimics that of
olefins). The separation of the biogenic and anthropogenic
components of olefins allows better representation in the
seasonal variability of monoterpene emissions, estimated
from BEIS3, U.S. EPA’s state-of-the-science Biogenic
Emissions Inventory System Version 3 [Vukovich and
Pierce, 2002]. The numerical integration of the ordinary
differential equations representing the gas-phase kinetics is
performed using a modified version of the quasi-steady state
approximation (MQSSA) scheme as described by Mathur et
al. [1998] that can be used with any chemical mechanism.
The chemistry integration time steps are determined inter-
nally based on local stiffness of the chemical system, such
that the chemistry is integrated for the duration of the model
time step in the time-splitting mode. Additional details on
the performance and accuracy of the scheme are described
by Mathur et al. [1998].

2.3. Photolysis Rates

[11] The calculation of photolysis rates in clear air and in
clouds requires the specification of wavelength bands,
extraterrestrial irradiance, surface albedo, ozone profiles,
aerosol profiles, cloud distributions, and absorption cross
section and quantum yield data. The absorption cross
section and quantum yield data are derived from experi-
ments and are well documented and updated periodically
[e.g., DeMore et al., 1994]. MAQSIP uses photolysis rates
from a lookup table following Chang et al. [1987]. It is
constructed from the delta-Eddington radiative transfer
model [Madronich, 1987] and consists of photolysis rates
at specific altitudes, latitudes, and hour angles. The model
linearly interpolates these values in space and time to
calculate the clear-sky photolysis rates in each grid cell.
Cloud fraction, cloud altitude and thickness, and cloud
optical depth derived from the model’s cloud scheme,
described in the next section, are used to calculate attenu-
ation due to clouds.

2.4. Cloud Processes

[12] The cloud process equation in MAQSIP represents
the rate of change of the species concentration due to the
presence of clouds in a given grid column as a sum of the
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rates of change due to subgrid-scale vertical turbulent mass
flux divergence generated by deep convection and shallow
convection, the aqueous-chemical formation/loss due to
kinetic production/destruction of dissolved species, and loss
due to precipitation removal. The formulation represents the
superposition of effects of clouds of different morphologies
that may occur within a grid column and depends on the
horizontal resolution of the simulation. Three spatial reso-
lution ranges are covered in the model’s cloud process
parameterizations; regional scale, mesoscale, and urban
scale.
[13] For regional-scale applications (typically �60 km),

MAQSIP uses the RADM Version 2.61 cloud scheme
[Chang et al., 1990; Dennis et al., 1993; McHenry and
Dennis, 1994], and includes treatment of precipitating and
nonprecipitating (pure fair weather, or coexisting with
precipitating) clouds; these latter cloud types are important
for representing sulfate production, as they provide no wet
removal mechanism and very efficient SO2 oxidation path-
ways relative to clear air. For the deep convective (precip-
itating) clouds, the RADM analytical package is used, while
for the latter the mixing mechanism described by Dennis et
al. [1993] is used. Aqueous chemistry, followed by wet
deposition, is calculated as in the work of Chang et al.
[1990] and Walcek and Taylor [1986] if the vertically
averaged cloud liquid water content (LWC) exceeds
0.01 gm�3, otherwise reactivity is ignored. This typically
occurs when cloud temperatures are below freezing. In that
case wet removal is modeled as an exponential following
Giorgi and Chameides [1985]. This scheme is used in the
PM model applications because currently this is the only
convective scheme available in MAQSP that is linked to the
RADM aqueous chemical species.
[14] For mesoscale applications (typically between 12 and

60 km), MAQSIP uses a version of the Kain-Fritsch scheme
[Kain and Fritsch, 1990, 1993] for deep convection. This
scheme inMAQSIP canmimic the cloud triggering data, time
of onset, and cloud duration using saved data from the driving
meteorological model. The convective mass flux is used to
estimate fractional coverage following Xu and Krueger
[1991], and the vertical extent and cloud liquid water. These
are then used to calculate the cloud optical depth, which is
used for estimating the attenuation of photolysis rates due to
clouds. The aqueous chemical mechanism treats dissolution
and dissociation of gases similar to Walcek and Taylor
[1986], and employs a simplified chemistry including
N2O5 hydrolysis that is appropriate for simulating tropo-
spheric ozone and wet removal of dissolved pollutants.
This scheme is used in the 36-km and 12-km ozone
simulations presented subsequently.
[15] All model applications also use a resolvable-scale

cloud scheme wherein the cloud is resolved by the driving
meteorological model. This can occur at any grid resolution,
and for such clouds, no additional cloud dynamics are
considered, since any convection and mixing would have
been represented in the wind fields. MAQSIP assumes the
presence of resolved-scale cloud when condensed water
exceeds 0.05 g kg�1 in a given model grid cell, which
represents about one-tenth that needed for autoconversion to
precipitation. Aqueous chemistry is carried out for all
condensate concentrations exceeding this value in a given
model grid cell, and wet removal is computed when

precipitation falls. At urban scales, i.e., grid resolutions
typically finer than 4 km, no other convective parameter-
izations are invoked. The cloud optical depth is calculated
using the approach described by Hansen et al. [1983]. The
clear-sky photolysis values are then modified according to
Chang et al. [1987]. To treat the presence of multiple cloud
types within a grid column, an alternative scheme to
compute an average attenuation factor weighted by the
cloud fraction for each cloud type in the grid column is
also available [Shankar et al., 1999].
[16] For PM applications, MAQSIP’s cloud model also

includes in-cloud scavenging of the aerosols, their dissolu-
tion in cloud droplets, the increase of aerosol mass due to
sulfate production, and their wet deposition [Binkowski
and Shankar, 1994; Shankar and Binkowski, 1994]. The
rate of change of aerosol moments is derived in terms of
the in-cloud scavenging rate due to Brownian coagulation
of interstitial particles with cloud droplets, the wet removal
rate, and the production rate of SO4

2� mass as an extension
of the two-step process of Slinn [1974] and Chaumerliac
[1984].

2.5. Particulate Processes

2.5.1. Size Distribution Representation
[17] MAQSIP models the size distributions of particulate

species using the modal approach described by Binkowski
and Shankar [1995], wherein the aerosol populations rep-
resenting two fine modes (Aitken, accumulation) and a
coarse mode are mathematically modeled as a superposition
of three lognormal functions that evolve in size space with
time. These applications use fixed geometric standard
deviations that have been set to 1.7, 2.0, and 2.2, respec-
tively, in each mode. The geometric mean diameter of each
mode is diagnosed from the predicted moments at each
model time step for size-dependent calculations, e.g., coag-
ulation rates, deposition velocities, and visibility metrics.
Species treated in the applications shown here are NH4

+,
primary and secondary SO4

2� and NO3
�, primary and sec-

ondary organic carbon (OC) primary elemental carbon
(EC), and fugitive dust; all are distributed in the fine and
coarse modes, with the exception of secondary OC, and the
inorganic species, which are treated only in the fine modes.
The coarse mode is assumed not to undergo any chemical
processing. Additionally, coagulation is omitted in this
mode due to its relatively low number concentrations. Thus
the coarse mode in the applications presented here changes
only in response to emissions and to wet and dry removal.
2.5.2. Aerosol Dynamics
[18] The moment dynamic equations are solved for the

moments of the distribution using size-dependant coagula-
tion and condensation growth rates as described by Whitby
et al. [1991]. The change in aerosol moments due to the
growth of particles by condensation of vapor-phase sulfate
and organics, and by the homogeneous nucleation of
sulfuric acid and water, is represented as a coupled process,
where nucleation occurs only as long as the steady-state
sulfate concentration exceeds the critical concentration
[Binkowski and Shankar, 1995]. Zeroeth- and third-moment
production rates due to nucleation are calculated based upon
the condensation timescale and the production rate of
sulfate vapor from SO2 oxidation, following the nucleation
parameterization scheme of Harrington and Kreidenweis
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[1998]. This scheme uses the vapor production rate to
predict the critical vapor concentration above which nucle-
ation occurs, and independently calculates the nucleation
rates for the two moments in the Aitken mode, treated as the
repository of new particles. The vapor mass remaining that
does not go into new particle formation is condensed onto
existing particles; thus, the difference between the vapor
production rate and nucleation rate for the third moment is
used to compute the growth rates due to sulfate condensation
for the third moments of the chemically active aerosol
modes, following Whitby et al. [1991]. These rates are
added to those due to anthropogenic and biogenic SOA
production, calculated using yield fractions (i.e., the mass
concentration of SOA produced per unit mass concentration
of the VOC reacted) given by Pandis et al. [1992, 1993],
and the concentrations of the precursor organic groups.
Primary emission rates for aerosol species such as fine and
coarse dust and organic and elemental carbon are converted
into emission rates for the aerosol moments using the
background values of the size parameters for the accumula-
tion and coarse modes and added to the overall moment rate
of change. The constituent aerosol species themselves are
updated for emissions in the vertical diffusion algorithm.
[19] The moment dynamic equations are solved using a

forward Euler integration scheme described by Whitby et al.
[1991]. The subsequent diagnosis of the mode mean diam-
eters may show strong overlap between the modes due to
the impact of the dynamic processes on particle growth. To
preserve the distinctness of two prognostic fine modes, a
fraction of the moments of the Aitken mode is transferred to
the accumulation mode using the overlap criteria described
by Binkowski [1999].
2.5.3. Thermodynamics of Inorganic Species
[20] Inorganic aerosol composition in these applications

is determined using the Regional Particulate Model Aerosol
Reacting System (RPMARES) described by Binkowski
[1999]. The model treats the bulk equilibrium of the
SO4

2�-NO3
�-NH4

+-H2O system with the gas phase, assuming
the particles to be in the metastable state, i.e., the particles
are assumed to never dry out. The particulate-phase species
concentrations after equilibrium are partitioned among the
Aitken and accumulation modes proportional to the sulfate
mass in the modes. The ISORROPIA thermodynamic
model has recently been added to the available model
options, and found to compare very closely to the perfor-
mance of RPMARES for the inorganic species [Shankar
and Mathur, 2001]. In applications with ISORROPIA, the
MAQSIP aerosol chemistry has been modified to model the
interaction of sea salt species (Na+, Cl�) with anthropogenic
species in the fine and coarse modes [Shankar and Mathur,
2003] (also see http://www.cmascenter.org/2003_workshop/
session4/shankar_presentation.ppt).

2.6. Dry Deposition

[21] The species deposition velocity, vd, is used to esti-
mate the deposition flux to the surface, Fd =

ffiffiffi
g

p
vdc, where c

is the model concentration in the lowest model layer. This
flux is treated as a bottom boundary condition in vertical
turbulent mixing calculations for both gases and aerosols.
The deposition velocity is parameterized in terms of phys-
ical, chemical, and vegetative factors, and is estimated
following a method analogous to resistance in series

[Wamsley and Wesely, 1996]. Size-dependent dry deposition
velocities for the fine and coarse aerosol moments and
constituent species are computed following the surface-
layer resistance method described by Binkowski and
Shankar [1995].

2.7. Visibility Analysis

[22] MAQSIP outputs of PM species concentrations and
size distributions permit the analysis of visibility impair-
ment due to PM. The visual range is defined as the
farthest distance at which an observer can distinguish
between an object and its background. The contrast
between an object and its background is reduced by the
light extinction due to absorption and scattering by air
molecules and PM in the light path, with the aerosol
component (bsp) dominating that due to Rayleigh scatter-
ing and absorption by atmospheric gases. Assuming a
discernible minimum of 2% for contrast, the relationship
of d, the visual range, to the light extinction coefficient
(bext) is given by Koschmieder [1924] as

d ¼ 3:912=bext: ð2Þ

However, these quantities do not exhibit a linear profile
with respect to perceived visual changes. A somewhat more
useful visibility impairment measure is the deciview (dv)
index, which is directly proportional to the logarithm of
light extinction [Pitchford and Malm, 1994]:

dv ¼ 10 ln bext=0:01ð Þ ¼ 10 ln 391:2=dð Þ; ð3Þ

with bext = bsp + 0.01, where 0.01 km�1 is the standard
value for Rayleigh extinction (corresponding to an average
visibility of 391.2 km), and bsp is the aerosol extinction in
km�1.
[23] In MAQSIP two methods are available for estimat-

ing bsp and dv. The first method is based on a detailed
approach that uses particle size distribution parameters
predicted at each model grid cell in conjunction with a
Mie scattering algorithm [Wiscombe, 1980; Hanna et al.,
1993] to estimate aerosol optical properties. The algorithm
estimates the light extinction efficiency due to aerosols
based on the particle effective radius (half the ratio of the
third moment to the second moment of diameter) and
refractive index; the aerosol refractive index is adjusted
according to the aerosol liquid water content using an
empirical fit to the data of Kim and Boatman [1990]. The
extinction coefficient, bsp, is then computed using the
aerosol surface area and number concentration.
[24] When particle size distribution information is not

available, as is often the case with monitoring data, a second
method based on the empirical algorithm of Sisler and
Malm [2000] can be used. This allows evaluation of
modeled visibility against the Interagency Monitoring of
Protected Visual Environments (IMPROVE) network
[Malm et al., 1994] estimates. In this method, bsp is given
by:

bsp ¼ 0:003f RHð Þ sulfate½ 
 þ nitrate½ 
 þ ammonium½ 
ð Þ
þ 0:004 organic mass½ 
ð Þ þ 0:01 light-absorbing carbon½ 
ð Þ
þ 0:001 fine soil½ 
ð Þ þ 0:0006 coarse mass½ 
ð Þ; ð4Þ
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where mass concentrations of the aerosol constituents are in
mg m�3, and f(RH) is a relative-humidity-based correction
factor to account for light scattering by the aerosol liquid
water, and is based on data presented by Malm et al. [1994].

3. Regional Ozone Modeling

[25] While regional-scale atmospheric CTMs have been
widely used to study short-term episodes characterized by
extreme surface-level O3 pollution, little effort has been
devoted to examining their performance over longer time
periods under various dynamical and chemical conditions.
The proposed change to the national ambient air quality
standard (NAAQS) for O3 from a maximum 1-hour average
concentration to a maximum 8-hour average concentration
(http://www.epa.gov/ttn/naaqs/ozone/o3imp8hr) is expected
to significantly increase regions of O3 nonattainment
[Chameides et al., 1997] and may require analyses of CTM
simulations over longer periods.
[26] In the context of these emerging needs, MAQSIP

was used to simulate the distribution of tropospheric O3, its
precursors, and a variety of secondary product species for a
full summer season (15 May to 11 September 1995) over
the eastern United States (domain comparable to that shown

in Figure 7a). The horizontal grid employed a 36-km
resolution, and 22 sigma levels were used in the vertical
up to 100 mb. Meteorological fields were derived from the
Fifth-Generation Penn State/NCAR Mesoscale Model
(MM5) [Grell et al., 1994], which was run with four-
dimensional data assimilation (FDDA) and reinitialized
every five days. The emission inventories of CO, NOx,
and VOCs used in these simulations are described by
Houyoux et al. [2000].

3.1. Comparison With Surface Measurements

[27] Figure 1 shows comparisons of predicted hourly
surface O3 concentrations against measurements over a
20-day summer period at selected sites from the Southern
Oxidants Study [Meagher et al., 1998]. These time series
plots allow examination of the model’s ability to repro-
duce the magnitude of diurnal variations in predicted O3

as well as the timing of the peak O3, relative to the
measurements. It can be seen that while the model
captures the daytime peaks at most sites and the vari-
ability across the various sites, it overpredicts nighttime
O3. This overprediction can be attributed to a relatively
coarse horizontal resolution, a coarse surface-layer vertical
resolution (�38 m), and subgrid-scale effects associated

Figure 1. Comparison of hourly variations in surface-level O3 simulated by the model (dashed) with
observations (solid) at selected sites for a 20-day period starting 1200 UTC 7 July 1995.
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with the representation of O3 titration by NOx; the
artificial dilution of nighttime surface NOx emissions over
the model grid volume results in underestimation of
modeled NOx concentrations and consequently overpre-
diction in nighttime O3.
[28] To assess model performance in simulating regional

surface O3 distributions over the eastern United States over
the entire summer season, model results were compared
with measurements from the Aerometric Information Re-
trieval System (AIRS) network for a June–August 1995
period; there are 539 AIRS stations within the modeled
domain. To illustrate MAQSIP’s ability to simulate the
interday variability in synoptic surface O3, Figure 2a
presents comparisons of modeled and observed median
daily maximum O3 for the June–August period. The daily
maximum O3 was computed at each of the AIRS sites and
the median value across all sites was taken to represent each
daily point in Figure 2a; the modeled median value was
similarly computed based on daily maximum O3 at grid
cells corresponding to each of the AIRS sites. Comparisons
of the daily variations in measured and modeled-domain
median maximum O3 concentrations provide an overall
assessment of the model’s ability to represent the processes
regulating regional O3 distributions over the 3-month sim-
ulation period. As can be seen in Figure 2a, the model
replicates the trends in interday O3 variations. A more
quantitative assessment of model performance for surface
O3 is illustrated in Figure 2b, which presents variations in

the daily normalized bias (NB) and normalized gross error
(NGE), defined as

NB ¼ 1

N

XN
i¼1

cmi � coi
� �

coi
ð5Þ

NGE ¼ 1

N

XN
i¼1

cmi � coi
�� ��

coi
; ð6Þ

where for a given day, N is the number of valid modeled-
observed pairs (number of valid stations x number of valid
hours in day), and ci

m and ci
o are the modeled and observed

concentrations, respectively, at station i. In computing the
NB and NGE, we used a cutoff value of 40 ppb O3 for ci

o, to
screen out data pairs with low observed O3. For most days
within the 3-month simulation period (�90%), the bias in
predicted surface O3 is within ±20%, while the normalized
gross error is <25%. These daily metrics are within the
suggested performance criteria for management evaluation
studies [U.S. Environmental Protection Agency, 1991] and
are comparable to if not smaller than those reported for
other regional models by Russell and Dennis [2000].
[29] Additional comparisons of MAQSIP-predicted sur-

face O3 concentrations from these simulations against
measurements from the AIRS network have been reported
in two recent studies. Kasibhatla and Chameides [2000]
examined model performance from an episodic perspective
by computing modeled-observed correlation coefficients (r)
on a day-to-day basis, and also from a seasonal perspective
by calculating r on a percentile basis (i.e., at each location a
specific percentile of the observed and modeled time series
was selected and the r associated with that percentile was
computed). Their analyses indicated that although the
modeled-observed correlation coefficients computed on a
day-to-day basis showed significant variability (0.1–0.8),
on a percentile basis the model captured the dynamic range
of the observations quite well. The surface O3 predictions
from the seasonal calculations have also been evaluated
using spectral decomposition of modeled and observed
values into fluctuations on intraday, diurnal, synoptic, and
longer-term timescales following the approach of Rao et al.
[1997]. The correlations between modeled and observed
values were found to be low for the intraday component,
high for the diurnal component due to the inherent diurnal
cycle, and highest for the synoptic and longer-term time-
scale components [Hogrefe et al., 2001a, 2001b].

3.2. Comparison With Vertical Profile Measurements

[30] To assess the model’s representation of the vertical
distribution of trace species, model predictions were com-
pared with aircraft measurements. Figure 3 presents mod-
eled and observed vertical profiles for O3, NOy , and CO at
two locations where aircraft spirals were conducted under
the North American Research Strategy for Tropospheric
Ozone (NARSTO) program. The aircraft spirals at Pough-
keepsie, New York, were conducted in the early morning
(0400–0500 EST), while those at Summit, Delaware, were
conducted in the afternoon (1400–1500 EST), providing an
opportunity to compare and contrast model performance
during both daytime and nighttime conditions. While the

Figure 2. (a) Comparison of variations in modeled and
observed domain-median daily maximum O3. (b) Variations
in daily normalized bias and normalized gross error
computed using modeled and observed hourly values at
539 AIRS sites in the eastern U.S.
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Figure 3. Comparison of modeled (dashed lines) and observed (solid lines) vertical distributions of O3

(red), CO (green), and NOy (blue) for different days: (a) daytime profiles at Summit, Delaware;
(b) nighttime profiles at Poughkeepsie, New York.
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model is able to simulate the general range in individual
species concentrations and the qualitative features of the
observed vertical profiles (such as well-mixed profiles
through the boundary layer during the day and residual
layer at night), discrepancies occur between the modeled
and observed values on a day-to-day basis. The nights of 12
and 15 July 1995 in particular present stressful tests for the
model, as the observations indicate the presence of fresh
plumes (high NOy and low O3) aloft the nocturnal boundary
layer; such features are not likely to be resolved by the
dynamics and transport represented on a 36-km grid. Large
discrepancies between modeled and observed CO concen-
trations are also noted at the locations of these aircraft
spirals. The high observed CO concentrations between the
surface and 2 km altitude probably result from the influence
of extensive Canadian wildfires that occurred between June
and mid-July 1995, primarily north of 55�N latitude. These
emissions, which were outside our model domain, were not
considered in these applications, nor were their transport
effects reflected in the static lateral boundary conditions
used; this could contribute to the noted CO underpredic-
tions. This is further confirmed by recent modeling studies
that considered emissions from these wildfires and showed
significant improvement in model performance in predicted
CO relative to both surface and aloft measurements [cf.
McKeen et al., 2002].

3.3. Comparison With Regional Aircraft
Measurements

[31] From 21 June through 20 July 1995, measurements
of a variety of trace species were made from extensively
instrumented aircraft deployed as part of the Middle Ten-
nessee Ozone Study [Hübler et al., 1998]. Measurements
onboard the WP-3D aircraft operated by the National
Oceanic and Atmospheric Administration (NOAA) cover
a broad regional area extending north into Illinois, Indiana,
and Ohio, and east into North and South Carolina. These
measurements provide an opportunity to evaluate the mod-
el’s performance both within the daytime boundary layer
and above it from a regional perspective and to compare and
contrast the simulated and observed chemical composition
over regions characterized by different emission source
types. Five-minute-averaged data corresponding to the time
resolution of the in situ VOC measurements [Hübler et al.,
1998] were provided by the NOAA Aeronomy Laboratory.
For each flight, model-simulated mixing ratios were
extracted by ‘‘flying’’ the aircraft through the 3-D modeling
domain for 14 daytime flights; the spatial locations of the
aircraft were mapped to the model grid, whereas hourly
resolved model outputs were linearly interpolated to corre-
spond to the time at the middle of each 5-min measurement
interval.
[32] Correlations between these modeled and observed

mixing ratios, which are paired in both space and time, are
presented in scatterplots in Figure 4. To differentiate com-
parisons within the daytime boundary layer (BL) from those
in the free troposphere (FT), we segregated the modeled and
observed data into two bins using an altitude of 2 km as
representative of mean daytime BL height within the study
region. This is in general agreement with observations
during this period [McNider et al., 1998] as well as the
MM5 predictions used here. Significant scatter is observed

both for the daytime BL and for the FT, though the
correlation is generally better in the BL, where most of
the modeled values are within a factor of 2 of the observa-
tions when the modeled and observed data are paired in
both space and time. No obvious bias is observed for O3

within the BL, though significant underpredictions are
noted for O3 in the FT. Also noticeable in these comparisons
is the underprediction of modeled CO in the BL, which was
also apparent in both the daytime and nighttime vertical
profile comparisons for CO (at different locations) in
Figure 3. Wotawa and Trainer [2000] attribute the wide-
spread high CO concentrations observed over the eastern
United States during the summer of 1995 to emissions
associated with large forest fires in Canada. McKeen et al.
[2002] further show that during the period of strongest fire
influence, 10–30 ppb enhancements in O3 levels through
large regions of the eastern United States can be attributed
to precursor species emitted as a result of these fires. The
NOx, CO, and hydrocarbon emission inventory used in
these simulations does not account for such episodic events,
so the CO underpredictions and the discrepancies in BL and
FT O3 can be attributed in part to the inadequate represen-
tation of this biomass burning source in the simulations.
[33] Also shown in Figure 4 are comparisons of space-

time-paired mixing ratios for isoprene, HCHO, and H2O2.
The ability of MAQSIP to accurately represent chemical
transformations in the atmosphere depends upon reliable
simulation of the free radical budgets. Carbonyl com-
pounds, produced as a result of photo-oxidation of VOCs,
are important in determining the free radical budgets in the
atmosphere; they are a major source of free radicals through
photolysis and also serve as a sink for available OH [e.g.,
Trainer et al., 1987]. HCHO is produced as a result of OH-
initiated oxidation of a variety of VOCs, while H2O2 is
produced through radical termination reactions; thus com-
paring their modeled mixing ratios with observations pro-
vides an indirect measure of the model’s ability to represent
the photochemistry in an integrated sense. While significant
scatter is noted in the modeled-observed correlations for
these species, the model is able to capture the range of
variability in the measured mixing ratios within the BL. The
underprediction of highly reactive primary species such as
isoprene in grid-based models can arise due to artificial
dilution effects associated with instantaneous mixing of
emissions over relatively large grid volumes and the con-
sequent inadequate representation of its subsequent subgrid
chemistry; underpredictions in isoprene concentrations will
then translate to underprediction in its oxidation products,
such as HCHO. The underprediction in modeled isoprene
and HCHO could also arise due to uncertainty in isoprene
emissions, which are currently estimated to be biased low
[e.g., Pierce et al., 1998]; the rate of production of HCHO
from oxidation of anthropogenic VOCs is significantly
smaller than that from isoprene. In a recent study, Hanna
et al. [2005] estimated the uncertainties in isoprene emis-
sions from BEIS3 and quantified their effect on O3 pre-
dictions using three models, including MAQSIP. Their
results suggest that the 95% confidence range on calculated
uncertainties in isoprene emissions cover an order of mag-
nitude. The resultant uncertainties in predicted ozone,
however, were found to be only 15–20% across all models.
Additionally, for each of the model grid cells, Hanna et al.
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did not find any significant correlation between variations in
BEIS3 input parameters and variations in CTM-predicted
O3 concentrations. This suggests that over most of the
eastern U.S., where O3 production is NOx-sensitive, the
sensitivity of O3 production to variations in isoprene emis-
sions is likely to be small. Consequently, future corrections
in the model bias for isoprene mixing ratios are not expected

to systematically or adversely affect the model performance
for surface O3. The moderate correlation between the
observed and modeled data depicted in Figure 4 also arises
in part from comparing grid-averaged modeled values with
point measurements [e.g., Schere, 1988]. McKeen et al.
[1991] have noted that due to the variability in observations
and the inability of coarse-resolution models to represent

Figure 4. Correlation between model predictions and aircraft measurements for (a) O3, (b) CO,
(c) HCHO, (d) H2O2, and (e) isoprene. Filled circles correspond to data points in the daytime boundary
layer (below 2 km altitude) while open circles represent data points in the free troposphere (above 2 km).
Also shown are the 1:1 (solid) and 1:2 and 2:1 (dashed) lines.
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subgrid-scale effects, moderate correlation between mea-
sured and predicted values is probably as good as can be
expected. Another consistent feature noted in these corre-
lations is the relatively large discrepancy (primarily under-
prediction) between modeled and observed FT values. This
can be attributed to the initial and boundary conditions used
in these model simulations, which were specified at typical
background tropospheric values at all model heights. Con-
sequently, model-predicted O3 in the free troposphere is
significantly lower (35–50 ppb) than measured values (50–
90 ppb). These discrepancies highlight the need for im-
proved model initialization and lateral boundary conditions
in the FT, especially for long-term simulations wherein the
representation of exchange processes between the FT and
BL can influence predicted 3-D pollutant distributions.
[34] The model’s ability to simulate the regionally aver-

aged vertical profiles sampled by the aircraft campaigns
during the study period is illustrated in Figure 5, which
presents comparisons of the average composite vertical
profiles for various species. In constructing these profiles,
we averaged both the observed and the modeled data within
each vertical model layer and over all the flights; the figure
also shows standard deviation bars. These vertical profiles
may thus be regarded as representing the mean conditions
that occurred over middle Tennessee and surrounding areas
during the study period. In general, the model tracks the
composite average gradients within both the BL and FT for
the various species, with some exceptions. Noticeable
among these are the underpredictions for O3 and HCHO
in the FT and CO in the BL, as discussed earlier. These
comparisons with regional aircraft data further highlight the
important effect of model initialization and lateral boundary
conditions on predicted FT distributions.
[35] The ability of the model to accurately represent

chemical transformations in the atmosphere depends upon
reliable simulation of the OH fields. As discussed earlier,
HCHO is produced from OH-initiated oxidation of a variety
of VOCs, and its rate of production due to OH oxidation of
anthropogenic VOCs is significantly smaller than that from
isoprene, due to a combination of low concentrations,
slower kinetics, and smaller yields [e.g., Carter and
Atkinson, 1996]. In their analysis of aircraft data, Lee et
al. [1998] point out that at the concentrations measured
during the study period, HCHO accounted for a substantial
portion of the OH reactivity, comparable to that of isoprene
and CO, and contributed up to 25–30% of the midday
radical production. The comparisons of simulated HCHO
mixing ratios with aircraft measurements in Figures 4 and 5
show that while the model tends to slightly underpredict
HCHO, it simulates the range of variability in the measured
mixing ratios within the boundary layer. To gain further
insight into MAQSIP’s ability to simulate radical chemistry
over the study domain, we examined selected constituents in
terms of their reactivity with OH. On the basis of the results
of Lee et al. [1998], we limit our analysis to isoprene,
HCHO, and CO, since their reactivity against OH was
determined to dominate compared to the other OH sink
species. Figure 6 elucidates the fractional contribution of the
three constituents to the composite reactivity, defined as

X
i

kOHi
Ri½ 
; ð7Þ

where [Ri] is the concentration of species i, kOHi
is the rate

constant for the reaction of species i with OH, and i =
isoprene, CO, or HCHO. Within the daytime boundary layer
(altitudes <2 km), the fractional contributions to the
composite reactivity are reasonably well represented by
the model. It is also interesting to contrast the variation of
the fractional contribution of the individual constituents
with the composite reactivity (right panels of Figure 6), with
isoprene showing a reverse trend from that for CO and
HCHO. At low reactivities, the relative contributions of CO
and HCHO are higher, while at higher reactivities isoprene
dominates the composite reactivity. This trend is seen in
both the modeled values and the measurements and
provides an indirect assessment of the model’s ability to
represent the spatial variability in the OH chemical sink.

4. Regional Particulate Matter Modeling

[36] The comprehensive gas-, aerosol-, and aqueous-
phase species configuration of MAQSIP was used to simu-
late regional distributions of particulate matter (PM) and its
composition over both the eastern and western United States.
The eastern U.S. study focused on a summertime simulation
(22–30 June 1996), while the western U.S. study focused on
a winter period (14–20 January 1997); together they provide
an assessment of the model predictions of PM over geo-
graphical domains characterized by differing emissions
forcing as well as different meteorological conditions. For
both cases a three-day model spin-up was used prior to the
period of interest. Further, both cases used a 36-km hori-
zontal grid resolution for the model simulations, 23 vertical
layers from the surface up to 100 mb, input meteorological
data derived from MM5 simulations, and emissions data
based on the 1996 National Emissions Inventory (NEI).
Model predictions of fine particulate matter (PM2.5) and its
compositional characteristics were evaluated against mea-
surements from two regional networks, the IMPROVE
network, which reports two 24-hour samples each week,
and the Clean Air Status and Trends Network (CASTNET)
(http://www.epa.gov/castnet), which reports weekly mea-
surements. Measurements from IMPROVE were averaged
over each period of interest. Given their relatively lower
temporal frequency, measurements from CASTNET for June
1996 and January 1997 were used to create representative
monthly averages for the respective periods.
[37] Figures 7 and 8 present comparisons of event-

averaged model predictions (over the periods 22–30 June
1996 and 14–20 January 1997, respectively) against these
averaged measurements for the two cases. Figures 7a and 8a
show the predicted surface-layer, event-averaged concentra-
tions of the total PM2.5, which includes the fine aerosol
species mentioned in section 2.5. These regional spatial
distributions of predicted concentrations arise from both
primary emissions and secondary aerosol formation down-
wind of the major source regions. Figures 7b and 8b show
comparisons of these predictions (at model grid cells
corresponding to the locations of measurement sites) against
measurements from the IMPROVE network. In general,
the model captures the spatial variability in the measured
PM2.5 concentrations (r2 = 0.5), though there is consider-
able scatter in the correlations and a tendency to over-
predict in the western U.S. winter case.
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[38] Figures 7c and 7d and 8c and 8d compare the
predicted compositional characteristics of the inorganic fine
particulates against measured values. Figures 7c and 8c
address particulate sulfate, nitrate, and ammonium concen-
trations; CASTNET reports measurements for SO4

2�, NO3
�,

and NH4
+, while IMPROVE reports SO4

2� and NO3
�. Both

the measurements and the model show that in the eastern
United States, SO4

2� is a relatively large fraction of the
PM2.5 mass, due both to the presence of numerous
emission sources downwind of the Ohio Valley and to

Figure 5. Comparison of regionally representative, average vertical distributions of various species
(including standard deviation bars) during June–July 1995, based on spatially and temporally paired
modeled (dashed line) and measured (solid line) data: (a) O3, (b) CO, (c) HCHO, (d) H2O2, and
(e) isoprene.
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the predominance of convective activity in the summer-
time in this region. Further, particulate nitrate formation is
suppressed in these simulations due to the temperature
dependence of the phase partitioning of nitrate; higher
temperatures lead to more nitrate partitioning to the gas
phase as HNO3. In contrast, in the western United States
in winter, particulate nitrate is a significant fraction mainly
due to the lower temperatures, and also the relatively low
concentrations of SO2 needed for sulfate formation com-

pared to the eastern U.S.; these aspects of the measure-
ments are captured in the simulations (Figure 8c). Also in
the eastern U.S. summer case, while the SO4

2� and NH4
+

concentrations are moderately underpredicted, the model
captures the relative compositional characteristics of SO4

2�,
NO3

�, and NH4
+ in the inorganic PM mass reasonably well

(Figure 7c). In the western U.S. winter case, the model
tends to overpredict concentrations of all three components
relative to the observations (Figure 8c). The overpredictions

Figure 6. Modeled and measured fractional contributions of isoprene, CO, and HCHO to the composite
reactivity at altitudes <2 km: scatter plots of modeled versus observed fractional contributions (left) and
correlation between individual fractional contributions and composite reactivity (right). Also shown in
the left panels are the 1:1 (solid) and 1:2 and 2:1 (dashed) lines.
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in NO3
� and NH4

+ in the western U.S. winter case arise in part
from uncertainty in seasonal allocation of annual NH3

emission inventories, especially during the cooler months
when NH3 emissions are quite low [e.g., Mathur and
Dennis, 2003]. For conditions typical of the eastern United
States, Gilliland et al. [2003], for instance, estimate scaling
down annual NH3 emissions from the NEI by as much as
68% for wintertime conditions, based on their model inver-
sion analysis. These overpredictions could also be related in
part to uncertainties associated with HNO3 production via
heterogeneous pathways and its effects on simulated air-
borne total nitrate. Recent studies [e.g., Riemer et al., 2003]
suggest that simple parameterizations typically employed
in 3-D models may overestimate the effects of this
pathway on simulated photochemistry; overestimation of
nitrate formation through this pathway contributes to an
overestimation of particulate nitrate, which is further

magnified in NH3-rich regions, especially in winter, since
wintertime NH3 emissions are overestimated in the inven-
tory. However, in assessing the magnitude of the bias in
the model relative to the measurements it is also important
to consider the bias intrinsic in the measurements them-
selves. For instance, Sickles [1999] reports that CASTNET
NH4

+ values may be biased high due to capture and
retention of NH3 by acidic sites on particles collected
by the filter. Recently, Ames and Malm [2001] compared
particulate SO4

2� and NO3
� concentrations from the

IMPROVE and CASTNET networks to quantify the relative
bias between the two networks. They found that in the west
and the interior desert/mountain regions the NO3

� values
reported by CASTNET were higher than those from the
IMPROVE network, while the trend was opposite at the
limited comparison sites in the eastern United States. Par-
ticulate NO3

� loss in the measurements due to temperature-

Figure 7. Fine particulate mass and compositional characteristics over the eastern U.S. for a summer
case during June 1996: (a) modeled spatial distribution of average PM2.5 concentrations in the lowest
model layer; (b) comparison of modeled PM2.5 concentrations with IMPROVE measurements;
(c) comparison of modeled SO4

2�, NO3
�, and NH4

+ concentrations with IMPROVE and CASTNET
measurements; (d) comparison of modeled SO4

2�, NO3
�, and NH4

+ fractions in the inorganic PM2.5 with
CASTNET measurements. Also shown in the scatter plots are the 1:1 (solid) and 1:2 and 2:1 (dashed)
lines.
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dependent volatilization can result in such bias [e.g., Benner
et al., 1991] and also contribute to the modeled NO3

�

overpredictions. Another mechanism causing the difference
in particle NO3

� concentrations between the two networks
could be the enhanced coarse-particle NO3

� collection effi-
ciency in the non-size-selective CASTNET sampler. How-
ever, these two mechanisms result in observational biases
that are opposite in direction [Ames and Malm, 2001], thus
making it difficult to develop a universal ‘‘correction factor’’
to facilitate a quantitative assessment of model bias. It is also
possible that the comparisons between modeled values and
observations are influenced by a systematic bias in a model
process (e.g., mixing height and intensity of mixing) that
impacts all aerosol components in a similar manner. For
instance, the boundary layer heights used in the western U.S.
winter case were found to be poorly predicted by the
meteorological model and often too low; this contributes
to the systematic high bias noted for all PM components in
Figure 8c. Further, the metastable assumption may not
represent the aerosol state under the relatively dry conditions
prevalent in many parts of the western U.S.
[39] To reduce such biases intrinsic in both the measure-

ments and the model, we compared the predicted relative

fractions of these three primary inorganic PM components
against measured fractions based on the CASTNET data
(Figures 7d and 8d). Compared to the absolute concentra-
tion levels, the model does better at capturing the fractions
of the three inorganic components relative to the total
inorganic (dry) mass and also their spatial variability. The
better agreement of model predictions of the relative frac-
tions of SO4

2�, NO3
�, and NH4

+ compared to those of their
individual concentrations suggests that the model chemistry
and its processing of emissions capture the speciation of the
inorganic aerosol mass adequately, although it is likely that
systematic biases may exist in a model process (e.g.,
mixing) or in the input emissions.

5. Visibility Modeling and Analysis

[40] To illustrate MAQSIP’s capability to assist in ana-
lyzing atmospheric visibility, model estimates for visibility
parameters are presented for the eastern U.S. summer case
and the western U.S. winter case discussed in the previous
section. Figures 9a and 9b present event-averaged regional
visibility estimated using the IMPROVE empirical algo-
rithm [Sisler and Malm, 2000] and the Mie algorithm

Figure 8. Same as Figure 7, but for a winter case during January 1997 over the western U.S.
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[Wiscombe, 1980], respectively, for the eastern U.S. summer
case, while Figures 10a and 10b show analogous panels for
the western U.S. winter case. Comparisons of modeled and
observed estimates of deciview at the IMPROVE monitor-
ing sites for the respective cases are shown in Figures 9c
and 10c.
[41] For both regions simulated, the Mie algorithm esti-

mates higher deciviews than the IMPROVE empirical
method. Further, the Mie-based results are biased high
relative to the observed values. This may indicate that
MAQSIP predicts mass concentrations better than size
distribution parameters such as number concentration and
aerosol effective radius; however, this cannot be verified, as
detailed regional measurements of aerosol size parameters
are currently lacking. Another possible source of discrep-
ancy between the Mie and the empirically based visibility
estimates could be the specification of the aerosol refractive
index used in the Mie calculations. Since the refractive
index is parameterized on aerosol liquid water content
(LWC), it is possible that in some situations it is not
representative of the modeled aerosol chemical composi-
tion. In contrast, the IMPROVE visibility estimate is based
on the mass-based scattering efficiencies of the different
aerosol constituents and may thus provide better agreement
with observed visibility in situations where aerosol size
parameters are not adequately simulated. It is also possible
that the observed overprediction of the hygroscopic aerosol
species in the west (Figure 8c) could result in a possible
overprediction of the aerosol LWC, which would yield
higher scattering efficiencies than observed.
[42] Figure 11 illustrates the correlation between modeled

and observed fractional contributions of various aerosol
constituents to the aerosol extinction as calculated by the
empirical algorithm. While there is significant scatter, it
occurs primarily for components that have relatively small
contributions (typically below 10%) to the estimated visi-
bility; most of the data points for components that contrib-
ute >10% exhibit significantly less scatter and are generally
within a factor of 2 of the observations. For the eastern U.S.
summer case, both the modeled and observed data show that
SO4

2� contributes the largest fraction (35–85%), while
organic mass contributes up to 20–25%. In contrast, for
the winter conditions simulated in the west, SO4

2� and
NO3

� each contribute comparable amounts (20–50%) to
the light extinction, due to lower SO4

2� and higher NO3
�

concentrations relative to the east. In the western U.S.
study, overprediction in NO3

� mass (Figure 8c) results in
overprediction of its contribution to light extinction. The
overprediction of the fine soil contribution combined with
the underprediction of the coarse mass contribution suggests
that the fractions of fugitive dust emissions apportioned to
the fine and coarse modes need further evaluation. Further,
the emissions model does not include windblown dust, a
significant component of coarse dust that is missing in these
simulations.

6. Nested Grid Applications and Effects of
Grid Resolution

[43] Since the dynamical and chemical processes leading
to air pollution occur on a wide range of spatial scales,
accuracy of model results is closely related to the resolution

Figure 9. Modeled and observed deciview over the eastern
U.S. during June 1996: (a) modeled distributions based on
IMPROVE empirical algorithm; (b) modeled distributions
based onMie algorithm; (c) comparison of modeled values in
Figures 9a and 9bwithmeasurements. Also shown are the 1:1
(solid) and 1:2 and 2:1 (dashed) lines.
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of the computational mesh on which model calculations are
performed; the interactions among atmospheric processes
regulating the fate of atmospheric pollutants must be effec-
tively resolved [e.g., Odman and Russell, 1991; Mathur et
al., 1992]. Sillman et al. [1990] suggest that degrading the
model horizontal resolution can cause a systematic positive
bias in O3 simulation, since the artificial dilution of NOx

emissions over relatively large grid volumes can increase
the O3 production efficiency per unit of NOx oxidized [Liu
et al., 1987]. Similar positive bias in predicted O3 resulting

Figure 10. Same as Figure 9, but for a winter case during
January 1997 over the western U.S.

Figure 11. Comparison of modeled and observed frac-
tional contributions of various aerosol constituents to
aerosol extinction: (a) for June 1996 over the eastern
U.S.; (b) for January 1997 over the western U.S. Dashed
lines represent the 1:2 and 2:1 lines.
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from degradation of horizontal grid resolution has also been
reported in simulations over southern California by Kumar
et al. [1994]. Through box-model calculations of O3 pro-
duction efficiency for a variety of conditions, Liang and
Jacobson [2000] suggest that coarsely resolved models
might underpredict or overpredict O3 production because
they are unable to accurately represent the blending of air
masses of different origin.
[44] MAQSIP was used to simulate O3 distributions over

North Carolina for 19–25 June 1996. The period of 21–
24 June was characterized by elevated O3 levels that were
associated with a frontal system to the north and a high-
pressure system to the southwest of the state. The move-
ment of the front resulted in recirculation during this period.
Figure 12 illustrates the nested-grid configuration
employed: a 36-km-resolution outer grid over the eastern
U.S., a nested 12-km grid over the southeastern U.S., and a
4-km grid covering portions of North Carolina including the
metropolitan areas of Charlotte, Raleigh-Durham-Chapel
Hill, and Greensboro-Winston Salem. The vertical extent
ranging from the surface to 100 mb was discretized using
26 layers of variable thickness, with a 38-m lowest-layer
thickness and nine layers within the first 1 km. Meteoro-
logical fields were derived from MM5 simulations using a
one-way nesting with the same 36-, 12-, and 4-km grid
configuration as for MAQSIP. Temperature-dependent (e.g.,
biogenic emissions) and stability-dependent (e.g., plume
rise for point sources) emission rates for each grid cell were
based on meteorological information for each grid system.
[45] To illustrate the effects of grid resolution on simu-

lated O3 spatial distributions and temporal trends, we limit
our analysis to the spatial extent of the 4-km-resolution
domain, which is common to all three grid systems. Since
the simulations employed one-way nesting, we can system-
atically study the effects of artificial dilution and represen-

tation of land surface characteristics resulting from
improved horizontal resolution on simulated O3 distribu-
tions. Figure 13 presents the spatial distributions of simu-
lated surface-level O3 from each of the three grid resolutions
at 1900 UTC 24 June 1996. Overlaid on the simulated
distributions are the observed O3 values at AIRS stations
within the region. Comparing these observations with the
simulated distributions shows that refining the grid resolu-
tion from 36 km to 4 km significantly affects the simulated
O3 distributions, with the 4-km grid providing a better
representation of the spatial gradients in surface O3. Also
noticeable in these comparisons is the overprediction of O3

at the 36-km and 12-km resolutions, resulting from a wider
O3 plume along the transportation corridor between the
Charlotte and Greensboro areas. At the 4-km resolution this
is rectified; the simulated O3 plume is much narrower.
[46] Figure 14 compares the temporal evolution of the

simulated hourly ozone at the three resolutions with mea-
sured data at selected sites. The Arrowood and Duke Street
sites represent urban locations, while Bethany, Hattie Ave-

Figure 12. Model domain and the 36-, 12-, and 4-km
nested-grid configuration for the North Carolina ozone
simulation.

Figure 13. Simulated surface O3 distributions over North
Carolina at 1900 UTC 24 June 1996, using (a) 36-km,
(b) 12-km, and (c) 4-km grid resolutions. The color-
coded diamonds represent corresponding AIRS ozone
measurements.
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nue, and Shiloh Church are downwind of major point
sources. Noticeable in these comparisons is the overpredic-
tion of peak O3 at the urban locations at the 36-km
resolution, resulting from higher O3 production efficiency
per unit NOx oxidized relative to the 12- and 4-km grids, as
discussed earlier. Additionally, improving the resolution
from 36 km to 4 km systematically helps reduce the

nighttime O3 overprediction at these urban locations due to
improved representation of the O3 titration by NOx emis-
sions. Comparisons at the three other sites in Figure 14,
which are frequently impacted by plumes from point sour-
ces, illustrate that the 4-km grid provides the most realistic
O3 simulation, due to better representation of the down-
wind lateral dispersion of emissions and their chemical

Figure 14. Comparison of temporal variations in surface O3 simulated by the 36-km, 12-km, and 4-km
grids with observations at selected sites: Arrowood (35.113�N, 80.919�W), Duke Street (35.035�N,
78.904�W), Bethany (36.308�N, 79.858�W), Hattie Avenue (36.11�N, 80.226�W), and Shiloh Church
(36.203�N, 80.215�W).
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evolution; the 36-km simulation tends to overpredict
daytime values, while both over- and underpredictions
are noted for the 12-km simulation.
[47] Quantitative estimates of error in modeled surface O3

relative to the measurements for the three grid resolutions
for each simulation day are presented in Figure 15; the
statistic used is normalized gross error (NGE), as defined in
equation (6). For each simulation day, the largest NGE
values are noted for the 36-km grid. Refining the grid
resolution to 12 km and 4 km reduces NGE, though the
improvements in model error are modest when examined
globally as in Figure 15.

7. Summary and Concluding Remarks

[48] In its current form, MAQSIP has been applied to a
variety of problems to study the distribution of tropospheric
O3, particulate matter, and airborne acids over a variety of
domains and over temporal scales ranging from episodic to
seasonal. The statistical correlations between simulated
surface O3 concentrations and measurements on a daily
and episodic basis are comparable to those obtained with
other models [e.g., Hogrefe et al., 2001a, 2001b; Fiore et
al., 2003]. The daily performance metrics are found to be
within the suggested performance criteria for management
evaluation studies. Analyses of predicted surface O3 con-
centrations over an entire summer season indicate that the
model captures the day-to-day variations in regional O3

distributions, and the dynamic range of the observations on
a seasonal basis [Kasibhatla and Chameides, 2000]; it also
represents the diurnal, synoptic, and longer-term timescales
better than the intraday component [Hogrefe et al., 2001b].
These results demonstrate the model’s viability for use in
longer-term simulations of surface O3 trends and distribu-
tions. However, such longer-term simulations also warrant
further improvements in the model, especially in its repre-
sentation of processes in the free troposphere and its
exchange with the boundary layer. Comparisons with lim-
ited observational aircraft data show moderate to poor

correlation with measurements in the free troposphere.
While these discrepancies can be attributed in part to model
initialization and lateral boundary conditions specification,
further evaluation of the chemical mechanisms currently
used in the model for representing chemistry in the free
troposphere is needed. Another area of potential improve-
ment would be the incorporation of emissions due to
lightning and to episodic biomass burning and forest fires,
which are not accounted for in most regional models.
[49] The limited comparisons with available speciated

PM measurements show that while the model can represent
the spatial variability of the total fine particulate matter
(PM2.5) mass and its relative partitioning among the primary
inorganic components (SO4

2�, NO3
�, NH4

+) over both the
eastern and western United States, the predictions for the
individual components are biased high over the west in the
winter. The magnitude of this model bias, however, cannot
be accurately estimated given the intrinsic bias in the
currently available measurements. Emissions of both win-
tertime ammonia and NOx plus uncertainties in current
representation of heterogeneous pathways for nitrate forma-
tion, combined with the poorly predicted boundary layer
heights used by the model, may be responsible for this high
model bias. Further, while MAQSIP includes a detailed
treatment of aerosol dynamics, regional measurements are
currently insufficient to directly evaluate the estimated
aerosol size distributions. Nevertheless, the availability of
aerosol size and number distributions in the predictions
facilitates the use of the model in exploring potential
radiative and optical effects of tropospheric aerosol loading,
and provides expanded capability for use of the model
in addressing evolving issues related to regional visibility
impairment and climate perturbations [Mathur et al., 2000]
(also see http://www.cep.unc.edu/empd/projects/integrated/
index.shtml).
[50] The results presented in this paper, based on a few

selected MAQSIP applications, provide an initial assess-
ment of the model’s performance and capabilities. A num-
ber of modeling studies with MAQSIP are currently
underway and will provide further assessments of the
adequacies and inadequacies of the various modeled pro-
cesses and further contribute to its evaluation. Unlike
numerical weather prediction, which involves multiple runs
of multiple models, atmospheric chemistry and transport
modeling has not been able to benefit from the repeated
forecast applications that test a model’s ability to reliably
predict the distribution of trace species under various
conditions. Guided by the performance of the model over
a full season of active photochemistry, a quasi-operational
real-time atmospheric chemical forecast system that couples
the MM5 and an optimized version of MAQSIP with the
emissions processing model SMOKE has also been devel-
oped [McHenry et al., 2004]; the system has been opera-
tional since 1999. Continuous analyses of such repeated
forecast applications provide unique opportunities to test the
model under various dynamical and chemical conditions
and will help further improve the model.
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Figure 15. Normalized gross error in simulated surface O3
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dans un modèle tridimensionel à mesoechelle de lessivage de l’atmo-
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G. Hübler, F. C. Fehsenfeld, and J. M. Meagher (2002), Ozone produc-
tion from Canadian wildfires during June and July of 1995, J. Geophys.
Res., 107(D14), 4192, doi:10.1029/2001JD000697.

McNider, R. T., W. B. Norris, A. J. Song, R. L. Clymer, S. Gupta, R. M.
Banta, R. J. Zamora, and A. B. White (1998), Meteorological conditions
during the 1995 Southern Oxidants Study Nashville/Middle Tennessee
field intensive, J. Geophys. Res., 103, 22,225–22,243.

McRae, G. J., W. R. Goodin, and J. H. Seinfeld (1982), Numerical solution
of atmospheric diffusion equation for chemically reactive flows, J. Com-
put. Phys., 45, 1–42.

Meagher, J. F., E. B. Cowling, F. C. Fehsenfeld, and W. J. Parkhurst (1998),
Ozone formation and transport in the southeastern United States: Over-
view of the SOS Nashville/Middle Tennessee Ozone Study, J. Geophys.
Res., 103, 22,213–22,224.

Morris, R. E., and T. C. Myers (1990), User’s guide for the Urban Airshed
Model, Vol. 1, User’s manual for UAM (CB-IV), EPA-450/4-90/007a,
NTIS PB91-131227/REB, Natl. Tech. Inf. Serv., Springfield, Va.

Odman, M. T., and A. G. Russell (1991), Multiscale modeling of pollutant
transport and chemistry, J. Geophys. Res., 96, 7363–7370.

Odman, M. T., and A. G. Russell (2000), Mass conservative coupling of
non-hydrostatic meteorological models with air quality models, in Air
Pollution Modelling and Its Application XIII, edited by S. E. Gryning
and E. Batchvarova, pp. 651–660, Springer, New York.

Odman, M. T., R. Mathur, K. Alapaty, R. Srivastava, D. S. McRae, and
R. J. Yamartino (1997), Nested and adaptive grids for multiscale envir-
onmental modeling, in Next Generation Environmental Models Compu-
tational Methods, edited by G. Delic and M. F. Wheeler, pp. 59–68, Soc.
for Indust. and Appl. Math., Philadelphia, Penn.

Pandis, S. N., R. A. Harley, G. R. Cass, and J. H. Seinfeld (1992), Sec-
ondary organic aerosol formation and transport, Atmos. Environ., 26A,
2269–2282.

Pandis, S. N., A. S. Wexler, and J. H. Seinfeld (1993), Secondary organic
aerosol formation and transport, 2: Predicting the ambient secondary
organic aerosol size distribution, Atmos. Environ., 27, 2403–2416.

Peters, L. K., et al. (1995), The current state and future direction of Eulerian
models in simulating the tropospheric chemistry and transport of trace
species: A review, Atmos. Environ., 29, 189–222.

Pierce, T., C. Geron, L. Bender, R. Dennis, G. Tonnesen, and A. Guenther
(1998), Influence of increased isoprene emissions on regional ozone
modeling, J. Geophys. Res., 103, 25,611–25,629.

Pitchford, M. L., and W. C. Malm (1994), Development and application of
a standard visual index, Atmos. Environ., 28, 1049–1054.

Rao, S. T., I. G. Zurbenko, R. Neagu, P. S. Porter, J. Y. Ku, and R. F. Henry
(1997), Space and time scales in ambient ozone data, Bull. Am. Meteorol.
Soc., 78, 2153–2166.

Riemer, N., H. Vogel, B. Schell, I. Ackermann, C. Kessler, and H. Hass
(2003), Impact of the heterogeneous hydrolysis of N2O5 on chemistry
and nitrate aerosol formation in the lower troposphere under photo-
smog conditions, J. Geophys. Res., 108(D4), 4144, doi:10.1029/
2002JD002436.

Russell, A. G., and R. Dennis (2000), NARSTO critical review of photo-
chemical models and modeling, Atmos. Environ., 34, 2283–2324.

Schere, K. L. (1988), Modeling ozone concentrations, Environ. Sci. Tech-
nol., 22, 488–495.

Seigneur, C., and P. Saxena (1990), Status of subregional and mesoscale
models, Vol. 1: Air quality models, EPRI EN-664, Elect. Power Res.
Inst., Palo Alto, Calif.

Shankar, U., and F. S. Binkowski (1994), Sulfate aerosol wet deposition in
a three-dimensional Eulerian air quality modeling framework, paper pre-
sented at 4th International Aerosol Conference, Am. Assoc. for Aerosol
Res., Cincinnati, Ohio.

Shankar, U., and R. Mathur (2001), Regional modeling of reduced nitrogen
species: A comparative analysis of two thermodynamic models, paper
presented at 20th Annual Conference, Am. Assoc. for Aerosol Res.,
Portland, Oreg.

Shankar, U., and R. Mathur (2003), Extending size-dependent composition
to the modal approach: A case study with sea salt aerosol, paper pre-
sented at the 2nd Annual CMAS Models-3 User’s Conference—One
Atmosphere, One Community, One Modeling System: Models-3,
Environ. Prot. Agency, Research Triangle Park, N.C.

Shankar, U., A. F. Hanna, and S. J. Roselle (1999), Sensitivity of photolysis
rates to cloud optical properties in a three-dimensional gas-aerosol model,
paper presented at 18th Annual Conference, Am. Assoc. for Aerosol
Res., Cincinnati, Ohio.

Sickles, J. E., II (1999), A summary of airborne concentrations of sulfur-
and nitrogen-containing pollutants in the northeastern United States, J. Air
Waste Manage. Assoc., 49, 882–893.

Sillman, S., J. A. Logan, and S. C. Wofsy (1990), A regional scale model
for ozone in the United States with subgrid representation of urban and
power plant plumes, J. Geophys. Res., 95, 5731–5748.

Sisler, J. F., and W. C. Malm (2000), Spatial distributions of reconstructed
light extinctions and light-extinction budgets, in Spatial and Seasonal
Patterns and Temporal Variability of Haze and Its Constituents in the
United States, Rep. III, pp. 3-1–3-38, Colo. State Univ., Fort Collins,
Colo.

Slinn, W. G. N. (1974), Rate-limiting aspects of in-cloud scavenging,
J. Atmos. Sci., 31, 1172–1173.

Srivastava, R. K., D. S. McRae, and M. T. Odman (1994), Governing
equations of atmospheric diffusion, report, MCN, Research Triangle
Park, N.C.

Stockwell, W. R., P. Middleton, J. S. Chang, and X. Tang (1990), The
second-generation Regional Acid Deposition Model chemical mechanism
for regional air quality modeling, J. Geophys. Res., 95, 16,343–
16,367.

D13308 MATHUR ET AL.: MAQSIP APPLICATIONS FOR OZONE AND PM

22 of 23

D13308



Trainer, M., E.-Y. Hsie, S. A. McKeen, R. Tallamraju, D. D. Parrish, F. C.
Fehsenfeld, and S. C. Liu (1987), Impact of natural hydrocarbons on
hydroxyl and peroxy radicals at a remote site, J. Geophys. Res., 92,
11,879–11,894.

U.S. Environmental Protection Agency (1991), Guidelines for regulatory
applications of the Urban Airshed Model, EPA-450/4-91-013, Off. of Air
Quality Plan. and Stand., Research Triangle Park, N.C.

Venkatram, A., P. K. Karamchandani, and P. K. Misra (1988), Testing a
comprehensive acid deposition model, Atmos. Environ., 22, 737–747.

Vukovich, J., and T. Pierce (2002), The implementation of BEIS3 within
the SMOKE modeling framework, paper presented at the Emissions
Inventory Conference, Environ. Prot. Agency, Atlanta, Ga.

Walcek, C. J., and G. R. Taylor (1986), A theoretical model for computing
vertical distributions of acidity and sulfate production within cumulus
clouds, J. Atmos. Sci., 43, 339–355.

Wamsley, J. L., and M. L. Wesely (1996), Modification of coded para-
meterizations of surface resistances to gaseous dry deposition, Atmos.
Environ., 30, 1181–1188.

Whitby, E. R., P. H. McMurray, U. Shankar, and F. S. Binkowski (1991),
Modal aerosol dynamics modeling, EPA/60013-91/020 (NTIS PB91-
161729/AS), Natl. Tech. Inf. Serv., Springfield, Va.

Wiscombe, W. J. (1980), Improved Mie scattering algorithms, Appl. Opt.,
19, 1505–1509.

Wotawa, G., and M. Trainer (2000), The influence of Canadian forest fires
on pollutant concentrations in the United States, Science, 288, 324–328.

Xu, K.-M., and S. K. Krueger (1991), Evaluation of cloudiness using a
cumulus ensemble model, Mon. Weather Rev., 119, 342–367.

Yamartino, R. J., J. S. Scire, G. R. Carmichael, and Y. S. Chang (1992), The
CALGRID mesoscale photochemical grid model, Part I. Model formula-
tion, Atmos. Environ., 26A, 1493–1512.

Yanenko, N. N. (1971), The Method of Fractional Steps, Springer, New
York.

�����������������������
K. Alapaty, S. Arunachalam, F. S. Binkowski, A. F. Hanna, U. Shankar,

and A. Xiu, Carolina Environmental Program, University of North
Carolina at Chapel Hill, CB 6116, Chapel Hill, NC 27599-6116, USA.
D. W. Byun, University of Houston, Houston, TX 77204, USA.
J. K. S. Ching, R. L. Dennis, R. Mathur, T. E. Pierce, J. E. Pleim, S. J.

Roselle, K. L. Schere, and J. O. Young, Atmospheric Sciences Modeling
Division, Air Resources Laboratory, National Oceanic and Atmospheric
Administration, Research Triangle Park, NC 27711, USA. (rohit.mahur@
noaa.gov)
C. J. Coats Jr., J. N. McHenry, and D. T. Olerud Jr., Baron Advanced

Meteorological Systems, c/o North Carolina State University, 920 Main
Campus Drive, Raleigh, NC 27606, USA.
M. T. Odman, Georgia Institute of Technology, Atlanta, GA 30332, USA.

D13308 MATHUR ET AL.: MAQSIP APPLICATIONS FOR OZONE AND PM

23 of 23

D13308


